Skip to main content

AIFM2 Is Required for High-Intensity Aerobic Exercise in Promoting Glucose Utilization.

Citation
Nguyen, H. P., et al. “Aifm2 Is Required For High-Intensity Aerobic Exercise In Promoting Glucose Utilization.”. Diabetes, pp. 2084-2093.
Center Stanford University
Featured
Author Hai P Nguyen, Sneha Damal Villivalam, Byung Chul Jung, Dongjoo You, Frances Lin, Danielle Yi, Anna Pi, Katherine Ma, Sunhee Jung, Sang-Hee Park, Cholsoon Jang, Hei Sook Sul, Sona Kang
Abstract

Skeletal muscle is a major regulator of glycemic control at rest, and glucose utilization increases drastically during exercise. Sustaining a high glucose utilization via glycolysis requires efficient replenishment of NAD+ in the cytosol. Apoptosis-inducing mitochondrion-associated factor 2 (AIFM2) was previously shown to be a NADH oxidoreductase domain-containing flavoprotein that promotes glycolysis for diet and cold-induced thermogenesis. Here, we find that AIFM2 is selectively and highly induced in glycolytic extensor digitorum longus (EDL) muscle during exercise. Overexpression (OE) of AIFM2 in myotubes is sufficient to elevate the NAD+-to-NADH ratio, increasing the glycolytic rate. Thus, OE of AIFM2 in skeletal muscle greatly increases exercise capacity, with increased glucose utilization. Conversely, muscle-specific Aifm2 depletion via in vivo transfection of hairpins against Aifm2 or tamoxifen-inducible haploinsufficiency of Aifm2 in muscles decreases exercise capacity and glucose utilization in mice. Moreover, muscle-specific introduction of NDE1, Saccharomyces cerevisiae external NADH dehydrogenase (NDE), ameliorates impairment in glucose utilization and exercise intolerance of the muscle-specific Aifm2 haploinsufficient mice. Together, we show a novel role for AIFM2 as a critical metabolic regulator for efficient utilization of glucose in glycolytic EDL muscles.

Year of Publication
2022
Journal
Diabetes
Volume
71
Issue
10
Number of Pages
2084-2093
Date Published
10/2022
ISSN Number
1939-327X
DOI
10.2337/db21-1114
Alternate Journal
Diabetes
PMID
35772021
PMCID
PMC9501658
Download citation