Skip to main content

The Nuclear Receptor ESRRA Protects from Kidney Disease by Coupling Metabolism and Differentiation.

Citation
Dhillon, P., et al. “The Nuclear Receptor Esrra Protects From Kidney Disease By Coupling Metabolism And Differentiation.”. Cell Metabolism.
Center University of Pennsylvania
Author Poonam Dhillon, Jihwan Park, Carmen Hurtado Del Pozo, Lingzhi Li, Tomohito Doke, Shizheng Huang, Juanjuan Zhao, Hyun Mi Kang, Rojesh Shrestra, Michael S Balzer, Shatakshee Chatterjee, Patricia Prado, Seung Yub Han, Hongbo Liu, Xin Sheng, Pieterjan Dierickx, Kirill Batmanov, Juan P Romero, Felipe Prósper, Mingyao Li, Liming Pei, Junhyong Kim, Nuria Montserrat, Katalin Susztak
Keywords ESRRA, PPARA, Chronic kidney disease, fatty-acid oxidation, fibrosis, Kidney, Organoids, proximal tubule cells, single-cell ATAC sequencing, single-cell RNA sequencing
Abstract

Kidney disease is poorly understood because of the organ's cellular diversity. We used single-cell RNA sequencing not only in resolving differences in injured kidney tissue cellular composition but also in cell-type-specific gene expression in mouse models of kidney disease. This analysis highlighted major changes in cellular diversity in kidney disease, which markedly impacted whole-kidney transcriptomics outputs. Cell-type-specific differential expression analysis identified proximal tubule (PT) cells as the key vulnerable cell type. Through unbiased cell trajectory analyses, we show that PT cell differentiation is altered in kidney disease. Metabolism (fatty acid oxidation and oxidative phosphorylation) in PT cells showed the strongest and most reproducible association with PT cell differentiation and disease. Coupling of cell differentiation and the metabolism was established by nuclear receptors (estrogen-related receptor alpha [ESRRA] and peroxisomal proliferation-activated receptor alpha [PPARA]) that directly control metabolic and PT-cell-specific gene expression in mice and patient samples while protecting from kidney disease in the mouse model.

Year of Publication
2020
Journal
Cell metabolism
Date Published
12/2020
ISSN Number
1932-7420
DOI
10.1016/j.cmet.2020.11.011
Alternate Journal
Cell Metab
PMID
33301705
Download citation