Skip to main content

Opportunities and challenges for transcriptome-wide association studies.

Citation
Wainberg, M., et al. “Opportunities And Challenges For Transcriptome-Wide Association Studies.”. Nature Genetics, pp. 592-599.
Center University of Chicago
Author Michael Wainberg, Nasa Sinnott-Armstrong, Nicholas Mancuso, Alvaro N Barbeira, David A Knowles, David Golan, Raili Ermel, Arno Ruusalepp, Thomas Quertermous, Ke Hao, Johan L M Björkegren, Hae Kyung Im, Bogdan Pasaniuc, Manuel A Rivas, Anshul Kundaje
Abstract

Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene-trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for schizophrenia, low-density-lipoprotein cholesterol and Crohn's disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths. Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths and limitations of using eQTL datasets to determine causal genes at GWAS loci.

Year of Publication
2019
Journal
Nature genetics
Volume
51
Issue
4
Number of Pages
592-599
Date Published
12/2019
ISSN Number
1546-1718
DOI
10.1038/s41588-019-0385-z
Alternate Journal
Nat. Genet.
PMID
30926968
PMCID
PMC6777347
Download citation