Skip to main content

Exome-Derived Adiponectin-Associated Variants Implicate Obesity and Lipid Biology.

Citation
Spracklen, C. N., et al. “Exome-Derived Adiponectin-Associated Variants Implicate Obesity And Lipid Biology.”. American Journal Of Human Genetics, pp. 15-28.
Center University of Michigan
Author Cassandra N Spracklen, Tugce Karaderi, Hanieh Yaghootkar, Claudia Schurmann, Rebecca S Fine, Zoltan Kutalik, Michael H Preuss, Yingchang Lu, Laura B L Wittemans, Linda S Adair, Matthew Allison, Najaf Amin, Paul L Auer, Traci M Bartz, Matthias Blüher, Michael Boehnke, Judith B Borja, Jette Bork-Jensen, Linda Broer, Daniel I Chasman, Yii-Der Ida Chen, Paraskevi Chirstofidou, Ayşe Demirkan, Cornelia M van Duijn, Mary F Feitosa, Melissa E Garcia, Mariaelisa Graff, Harald Grallert, Niels Grarup, Xiuqing Guo, Jeffrey Haesser, Torben Hansen, Tamara B Harris, Heather M Highland, Jaeyoung Hong, Arfan Ikram, Erik Ingelsson, Rebecca Jackson, Pekka Jousilahti, Mika Kähönen, Jorge R Kizer, Peter Kovacs, Jennifer Kriebel, Markku Laakso, Leslie A Lange, Terho Lehtimäki, Jin Li, Ruifang Li-Gao, Lars Lind, Jian'an Luan, Leo-Pekka Lyytikäinen, Stuart MacGregor, David A Mackey, Anubha Mahajan, Massimo Mangino, Satu Männistö, Mark I McCarthy, Barbara McKnight, Carolina Medina-Gomez, James B Meigs, Sophie Molnos, Dennis Mook-Kanamori, Andrew P Morris, Renée de Mutsert, Mike A Nalls, Ivana Nedeljkovic, Kari E North, Craig E Pennell, Aruna D Pradhan, Michael A Province, Olli T Raitakari, Chelsea K Raulerson, Alex P Reiner, Paul M Ridker, Samuli Ripatti, Neil Roberston, Jerome I Rotter, Veikko Salomaa, America A Sandoval-Zárate, Colleen M Sitlani, Tim D Spector, Konstantin Strauch, Michael Stumvoll, Kent D Taylor, Betina Thuesen, Anke Tönjes, André G Uitterlinden, Cristina Venturini, Mark Walker, Carol A Wang, Shuai Wang, Nicholas J Wareham, Sara M Willems, Ko Willems van Dijk, James G Wilson, Ying Wu, Jie Yao, Kristin L Young, Claudia Langenberg, Timothy M Frayling, Tuomas O Kilpeläinen, Cecilia M Lindgren, Ruth J F Loos, Karen L Mohlke
Keywords adiponectin, cardio metabolic traits, exome, Genetics, genome-wide association study, lipids, obesity
Abstract

Circulating levels of adiponectin, an adipocyte-secreted protein associated with cardiovascular and metabolic risk, are highly heritable. To gain insights into the biology that regulates adiponectin levels, we performed an exome array meta-analysis of 265,780 genetic variants in 67,739 individuals of European, Hispanic, African American, and East Asian ancestry. We identified 20 loci associated with adiponectin, including 11 that had been reported previously (p < 2 × 10). Comparison of exome array variants to regional linkage disequilibrium (LD) patterns and prior genome-wide association study (GWAS) results detected candidate variants (r > .60) spanning as much as 900 kb. To identify potential genes and mechanisms through which the previously unreported association signals act to affect adiponectin levels, we assessed cross-trait associations, expression quantitative trait loci in subcutaneous adipose, and biological pathways of nearby genes. Eight of the nine loci were also associated (p < 1 × 10) with at least one obesity or lipid trait. Candidate genes include PRKAR2A, PTH1R, and HDAC9, which have been suggested to play roles in adipocyte differentiation or bone marrow adipose tissue. Taken together, these findings provide further insights into the processes that influence circulating adiponectin levels.

Year of Publication
2019
Journal
American journal of human genetics
Volume
105
Issue
1
Number of Pages
15-28
Date Published
12/2019
ISSN Number
1537-6605
DOI
10.1016/j.ajhg.2019.05.002
Alternate Journal
Am. J. Hum. Genet.
PMID
31178129
PMCID
PMC6612516
Download citation