- Home
- Featured Publications
- Center Publications
- IAPP toxicity activates HIF1α/PFKFB3 signaling delaying β-cell loss at the expense of β-cell function.
IAPP toxicity activates HIF1α/PFKFB3 signaling delaying β-cell loss at the expense of β-cell function.
Citation | “Iapp Toxicity Activates Hif1Α/Pfkfb3 Signaling Delaying Β-Cell Loss At The Expense Of Β-Cell Function.”. Nature Communications, p. 2679. . |
Center | University of Michigan |
Author | Chiara Montemurro, Hiroshi Nomoto, Lina Pei, Vishal S Parekh, Kenny E Vongbunyong, Suryakiran Vadrevu, Tatyana Gurlo, Alexandra E Butler, Rohan Subramaniam, Eleni Ritou, Orian S Shirihai, Leslie S Satin, Peter C Butler, Slavica Tudzarova |
Abstract |
The islet in type 2 diabetes (T2D) is characterized by amyloid deposits derived from islet amyloid polypeptide (IAPP), a protein co-expressed with insulin by β-cells. In common with amyloidogenic proteins implicated in neurodegeneration, human IAPP (hIAPP) forms membrane permeant toxic oligomers implicated in misfolded protein stress. Here, we establish that hIAPP misfolded protein stress activates HIF1α/PFKFB3 signaling, this increases glycolysis disengaged from oxidative phosphorylation with mitochondrial fragmentation and perinuclear clustering, considered a protective posture against increased cytosolic Ca characteristic of toxic oligomer stress. In contrast to tissues with the capacity to regenerate, β-cells in adult humans are minimally replicative, and therefore fail to execute the second pro-regenerative phase of the HIF1α/PFKFB3 injury pathway. Instead, β-cells in T2D remain trapped in the pro-survival first phase of the HIF1α injury repair response with metabolism and the mitochondrial network adapted to slow the rate of cell attrition at the expense of β-cell function. |
Year of Publication |
2019
|
Journal |
Nature communications
|
Volume |
10
|
Issue |
1
|
Number of Pages |
2679
|
Date Published |
12/2019
|
ISSN Number |
2041-1723
|
DOI |
10.1038/s41467-019-10444-1
|
Alternate Journal |
Nat Commun
|
PMID |
31213603
|
PMCID |
PMC6581914
|
Download citation |