Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways.
| Citation | Kim, Woo Seok, et al. “Organ-Specific, Multimodal, Wireless Optoelectronics for High-Throughput Phenotyping of Peripheral Neural Pathways”. 2021. Nature Communications, vol. 12, no. 1, 2021, p. 157. | 
| Center | University of Washington | 
| Author | Woo Seok Kim, Sungcheol Hong, Milenka Gamero, Vivekanand Jeevakumar, Clay M Smithhart, Theodore J Price, Richard D Palmiter, Carlos Campos, Sung Il Park | 
| Abstract | The vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions. | 
| Year of Publication | 2021 | 
| Journal | Nature communications | 
| Volume | 12 | 
| Issue | 1 | 
| Number of Pages | 157 | 
| Date Published | 12/2021 | 
| ISSN Number | 2041-1723 | 
| DOI | 10.1038/s41467-020-20421-8 | 
| Alternate Journal | Nat Commun | 
| PMCID | PMC7794361 | 
| PMID | 33420038 | 
| Download citation |