- Home
- Featured Publications
- Center Publications
- DDB1 E3 ligase controls dietary fructose-induced ChREBPα stabilization and liver steatosis via CRY1.
DDB1 E3 ligase controls dietary fructose-induced ChREBPα stabilization and liver steatosis via CRY1.
Citation | “Ddb1 E3 Ligase Controls Dietary Fructose-Induced Chrebpα Stabilization And Liver Steatosis Via Cry1.”. Metabolism: Clinical And Experimental, p. 154222. . |
Center | University of Michigan |
Author | Xin Tong, Deqiang Zhang, Omar Shabandri, Joon Oh, Ethan Jin, Kenneth Stamper, Meichan Yang, Zifeng Zhao, Lei Yin |
Keywords | CRY1, ChREBPα, DDB1, De Novo Lipogenesis, fructose, liver steatosis |
Abstract |
Fructose over-consumption contributes to the development of liver steatosis in part by stimulating ChREBPα-driven de novo lipogenesis. However, the mechanisms by which fructose activates ChREBP pathway remain largely undefined. Here we performed affinity purification of ChREBPα followed by mass spectrometry and identified DDB1 as a novel interaction protein of ChREBPα in the presence of fructose. Depletion and overexpression of Ddb1 showed opposite effects on the ChREBPα stability in hepatocytes. We next tested the impact of hepatic Ddb1 deficiency on the fructose-induced ChREBP pathway. After 3-week high-fructose diet feeding, both Ddb1 liver-specific knockout and AAV-TBG-Cre-injected Ddb1 mice showed significantly reduced ChREBPα, lipogenic enzymes, as well as triglycerides in the liver. Mechanistically, DDB1 stabilizes ChREBPα through CRY1, a known ubiquitination target of DDB1 E3 ligase. Finally, overexpression of a degradation-resistant CRY1 mutant (CRY1-585KA) reduces ChREBPα and its target genes in the mouse liver following high-fructose diet feeding. Our data revealed DDB1 as an intracellular sensor of fructose intake to promote hepatic de novo lipogenesis and liver steatosis by stabilizing ChREBPα in a CRY1-dependent manner. |
Year of Publication |
2020
|
Journal |
Metabolism: clinical and experimental
|
Volume |
107
|
Number of Pages |
154222
|
Date Published |
06/2020
|
ISSN Number |
1532-8600
|
DOI |
10.1016/j.metabol.2020.154222
|
Alternate Journal |
Metab. Clin. Exp.
|
PMID |
32246987
|
PMCID |
PMC7282961
|
Download citation |