Skip to main content

Selective Small Molecule Activators of TREK-2 Channels Stimulate Dorsal Root Ganglion c-Fiber Nociceptor Two-Pore-Domain Potassium Channel Currents and Limit Calcium Influx.

Citation
Dadi, P. K., et al. “Selective Small Molecule Activators Of Trek-2 Channels Stimulate Dorsal Root Ganglion C-Fiber Nociceptor Two-Pore-Domain Potassium Channel Currents And Limit Calcium Influx.”. Acs Chemical Neuroscience, pp. 558-568.
Center Vanderbilt University
Author Prasanna K Dadi, Nicholas C Vierra, Emily Days, Matthew T Dickerson, Paige N Vinson, David Weaver, David A Jacobson
Keywords DRG neuron, TREK-1, TREK-2, Pain, thallium flux, two-pore-domain potassium channel
Abstract

The two-pore-domain potassium (K2P) channel TREK-2 serves to modulate plasma membrane potential in dorsal root ganglia c-fiber nociceptors, which tunes electrical excitability and nociception. Thus, TREK-2 channels are considered a potential therapeutic target for treating pain; however, there are currently no selective pharmacological tools for TREK-2 channels. Here we report the identification of the first TREK-2 selective activators using a high-throughput fluorescence-based thallium (Tl) flux screen (HTS). An initial pilot screen with a bioactive lipid library identified 11-deoxy prostaglandin F2α as a potent activator of TREK-2 channels (EC ≈ 0.294 μM), which was utilized to optimize the TREK-2 Tl flux assay (Z' = 0.752). A HTS was then performed with 76 575 structurally diverse small molecules. Many small molecules that selectively activate TREK-2 were discovered. As these molecules were able to activate single TREK-2 channels in excised membrane patches, they are likely direct TREK-2 activators. Furthermore, TREK-2 activators reduced primary dorsal root ganglion (DRG) c-fiber Ca influx. Interestingly, some of the selective TREK-2 activators such as 11-deoxy prostaglandin F2α were found to inhibit the K2P channel TREK-1. Utilizing chimeric channels containing portions of TREK-1 and TREK-2, the region of the TREK channels that allows for either small molecule activation or inhibition was identified. This region lies within the second pore domain containing extracellular loop and is predicted to play an important role in modulating TREK channel activity. Moreover, the selective TREK-2 activators identified in this HTS provide important tools for assessing human TREK-2 channel function and investigating their therapeutic potential for treating chronic pain.

Year of Publication
2017
Journal
ACS chemical neuroscience
Volume
8
Issue
3
Number of Pages
558-568
Date Published
12/2017
ISSN Number
1948-7193
DOI
10.1021/acschemneuro.6b00301
Alternate Journal
ACS Chem Neurosci
PMID
27805811
PMCID
PMC5901755
Download citation