Skip to main content

Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation.

Citation
Chu, A. Y., et al. “Multiethnic Genome-Wide Meta-Analysis Of Ectopic Fat Depots Identifies Loci Associated With Adipocyte Development And Differentiation.”. Nature Genetics, pp. 125-130.
Center UCSD-UCLA
Author Audrey Y Chu, Xuan Deng, Virginia A Fisher, Alexander Drong, Yang Zhang, Mary F Feitosa, Ching-Ti Liu, Olivia Weeks, Audrey C Choh, Qing Duan, Thomas D Dyer, John D Eicher, Xiuqing Guo, Nancy L Heard-Costa, Tim Kacprowski, Jack W Kent, Leslie A Lange, Xinggang Liu, Kurt Lohman, Lingyi Lu, Anubha Mahajan, Jeffrey R O'Connell, Ankita Parihar, Juan M Peralta, Albert Smith V, Yi Zhang, Georg Homuth, Ahmed H Kissebah, Joel Kullberg, René Laqua, Lenore J Launer, Matthias Nauck, Michael Olivier, Patricia A Peyser, James G Terry, Mary K Wojczynski, Jie Yao, Lawrence F Bielak, John Blangero, Ingrid B Borecki, Donald W Bowden, John Jeffrey Carr, Stefan A Czerwinski, Jingzhong Ding, Nele Friedrich, Vilmunder Gudnason, Tamara B Harris, Erik Ingelsson, Andrew D Johnson, Sharon L R Kardia, Carl D Langefeld, Lars Lind, Yongmei Liu, Braxton D Mitchell, Andrew P Morris, Thomas H Mosley, Jerome I Rotter, Alan R Shuldiner, Bradford Towne, Henry Völzke, Henri Wallaschofski, James G Wilson, Matthew Allison, Cecilia M Lindgren, Wolfram Goessling, Adrienne Cupples, Matthew L Steinhauser, Caroline S Fox
Abstract

Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size-weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men of European, African, Hispanic and Chinese ancestry, with and without sex stratification, for six traits associated with ectopic fat (hereinafter referred to as ectopic-fat traits). In total, we identified seven new loci associated with ectopic-fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; P < 5 × 10; false discovery rate < 1%). Functional analysis of these genes showed that loss of function of either Atxn1 or Ube2e2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting physiological roles for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes affect adipocyte biology and how their perturbations contribute to systemic metabolic disease.

Year of Publication
2017
Journal
Nature genetics
Volume
49
Issue
1
Number of Pages
125-130
Date Published
12/2017
ISSN Number
1546-1718
DOI
10.1038/ng.3738
Alternate Journal
Nat. Genet.
PMID
27918534
PMCID
PMC5451114
Download citation