Skip to main content

A genome-wide linkage and association analysis of imputed insertions and deletions with cardiometabolic phenotypes in Mexican Americans: The Insulin Resistance Atherosclerosis Family Study.

Citation
Gao, C., et al. “A Genome-Wide Linkage And Association Analysis Of Imputed Insertions And Deletions With Cardiometabolic Phenotypes In Mexican Americans: The Insulin Resistance Atherosclerosis Family Study.”. Genetic Epidemiology, pp. 353-362.
Center UCSD-UCLA
Author Chuan Gao, Fang-Chi Hsu, Latchezar M Dimitrov, Hayrettin Okut, Yii-Der I Chen, Kent D Taylor, Jerome I Rotter, Carl D Langefeld, Donald W Bowden, Nicholette D Palmer
Keywords cardiometabolic disease, genome-wide association analysis, imputation, insertion/deletions, linkage analysis
Abstract

Insertions and deletions (INDELs) represent a significant fraction of interindividual variation in the human genome yet their contribution to phenotypes is poorly understood. To confirm the quality of imputed INDELs and investigate their roles in mediating cardiometabolic phenotypes, genome-wide association and linkage analyses were performed for 15 phenotypes with 1,273,952 imputed INDELs in 1,024 Mexican-origin Americans. Imputation quality was validated using whole exome sequencing with an average kappa of 0.93 in common INDELs (minor allele frequencies [MAFs] ≥ 5%). Association analysis revealed one genome-wide significant association signal for the cholesterylester transfer protein gene (CETP) with high-density lipoprotein levels (rs36229491, P = 3.06 × 10 ); linkage analysis identified two peaks with logarithm of the odds (LOD) > 5 (rs60560566, LOD = 5.36 with insulin sensitivity (S ) and rs5825825, LOD = 5.11 with adiponectin levels). Suggestive overlapping signals between linkage and association were observed: rs59849892 in the WSC domain containing 2 gene (WSCD2) was associated and nominally linked with S (P = 1.17 × 10 , LOD = 1.99). This gene has been implicated in glucose metabolism in human islet cell expression studies. In addition, rs201606363 was linked and nominally associated with low-density lipoprotein (P = 4.73 × 10 , LOD = 3.67), apolipoprotein B (P = 1.39 × 10 , LOD = 4.64), and total cholesterol (P = 1.35 × 10 , LOD = 3.80) levels. rs201606363 is an intronic variant of the UBE2F-SCLY (where UBE2F is ubiquitin-conjugating enzyme E2F and SCLY is selenocysteine lyase) fusion gene that may regulate cholesterol through selenium metabolism. In conclusion, these results confirm the feasibility of imputing INDELs from array-based single nucleotide polymorphism (SNP) genotypes. Analysis of these variants using association and linkage replicated previously identified SNP signals and identified multiple novel INDEL signals. These results support the inclusion of INDELs into genetic studies to more fully interrogate the spectrum of genetic variation.

Year of Publication
2017
Journal
Genetic epidemiology
Volume
41
Issue
4
Number of Pages
353-362
Date Published
12/2017
ISSN Number
1098-2272
DOI
10.1002/gepi.22042
Alternate Journal
Genet. Epidemiol.
PMID
28378447
PMCID
PMC6594546
Download citation