Skip to main content

Phosphorylation of NEUROG3 Links Endocrine Differentiation to the Cell Cycle in Pancreatic Progenitors.

Citation
Krentz, N. A. J., et al. “Phosphorylation Of Neurog3 Links Endocrine Differentiation To The Cell Cycle In Pancreatic Progenitors.”. Developmental Cell, pp. 129-142.e6.
Author Nicole A J Krentz, Dennis van Hoof, Zhongmei Li, Akie Watanabe, Mei Tang, Cuilan Nian, Michael S German, Francis C Lynn
Keywords CRISPR/Cas9, Cdkn1b, G1 lengthening, Kras, Ngn3, Sox9-rTTA, diabetes, human embryonic stem cells, insulin, mouse
Abstract

During pancreatic development, proliferating pancreatic progenitors activate the proendocrine transcription factor neurogenin 3 (NEUROG3), exit the cell cycle, and differentiate into islet cells. The mechanisms that direct robust NEUROG3 expression within a subset of progenitor cells control the size of the endocrine population. Here we demonstrate that NEUROG3 is phosphorylated within the nucleus on serine 183, which catalyzes its hyperphosphorylation and proteosomal degradation. During progression through the progenitor cell cycle, NEUROG3 phosphorylation is driven by the actions of cyclin-dependent kinases 2 and 4/6 at G/S cell-cycle checkpoint. Using models of mouse and human pancreas development, we show that lengthening of the G phase of the pancreatic progenitor cell cycle is essential for proper induction of NEUROG3 and initiation of endocrine cell differentiation. In sum, these studies demonstrate that progenitor cell-cycle G lengthening, through its actions on stabilization of NEUROG3, is an essential variable in normal endocrine cell genesis.

Year of Publication
2017
Journal
Developmental cell
Volume
41
Issue
2
Number of Pages
129-142.e6
Date Published
12/2017
ISSN Number
1878-1551
DOI
10.1016/j.devcel.2017.02.006
Alternate Journal
Dev. Cell
PMID
28441528
PMCID
PMC5517315
Download citation