Skip to main content

Tribbles 3 regulates protein turnover in mouse skeletal muscle.

Citation
Choi, R. H., et al. “Tribbles 3 Regulates Protein Turnover In Mouse Skeletal Muscle.”. Biochemical And Biophysical Research Communications, pp. 1236-1242.
Center Joslin Diabetes Center
Author Ran Hee Choi, Abigail McConahay, Ha-Won Jeong, Jamie L McClellan, Justin P Hardee, James A Carson, Michael F Hirshman, Laurie J Goodyear, Ho-Jin Koh
Keywords Atrophy, protein degradation, protein synthesis, TRB3
Abstract

Skeletal muscle atrophy is associated with a disruption in protein turnover involving increased protein degradation and suppressed protein synthesis. Although it has been well studied that the IGF-1/PI3K/Akt pathway plays an essential role in the regulation of the protein turnover, molecule(s) that triggers the change in protein turnover still remains to be elucidated. TRB3 has been shown to inhibit Akt through direct binding. In this study, we hypothesized that TRB3 in mouse skeletal muscle negatively regulates protein turnover via the disruption of Akt and its downstream molecules. Muscle-specific TRB3 transgenic (TRB3TG) mice had decreased muscle mass and fiber size, resulting in impaired muscle function. We also found that protein synthesis rate and signaling molecules, mTOR and S6K1, were significantly reduced in TRB3TG mice, whereas the protein breakdown pathway was significantly activated. In contrast, TRB3 knockout mice showed increased muscle mass and had an increase in protein synthesis rate, but decreases in FoxOs, atrogin-1, and MuRF-1. These findings indicate that TRB3 regulates protein synthesis and breakdown via the Akt/mTOR/FoxO pathways.

Year of Publication
2017
Journal
Biochemical and biophysical research communications
Volume
493
Issue
3
Number of Pages
1236-1242
Date Published
12/2017
ISSN Number
1090-2104
DOI
10.1016/j.bbrc.2017.09.134
Alternate Journal
Biochem. Biophys. Res. Commun.
PMID
28962861
PMCID
PMC5675010
Download citation