- Home
- Featured Publications
- Center Publications
- Neuroinflammation and White Matter Alterations in Obesity Assessed by Diffusion Basis Spectrum Imaging.
Neuroinflammation and White Matter Alterations in Obesity Assessed by Diffusion Basis Spectrum Imaging.
Citation | “Neuroinflammation And White Matter Alterations In Obesity Assessed By Diffusion Basis Spectrum Imaging.”. Frontiers In Human Neuroscience, p. 464. . |
Center | Washington University in St Louis |
Author | Amjad Samara, Tatianna Murphy, Jeremy Strain, Jerrel Rutlin, Peng Sun, Olga Neyman, Nitya Sreevalsan, Joshua S Shimony, Beau M Ances, Sheng-Kwei Song, Tamara Hershey, Sarah A Eisenstein |
Keywords | diffusion basis spectrum imaging, diffusion tensor imaging, neuroinflammation, obesity, white matter |
Abstract |
Human obesity is associated with low-grade chronic systemic inflammation, alterations in brain structure and function, and cognitive impairment. Rodent models of obesity show that high-calorie diets cause brain inflammation (neuroinflammation) in multiple regions, including the hippocampus, and impairments in hippocampal-dependent memory tasks. To determine if similar effects exist in humans with obesity, we applied Diffusion Basis Spectrum Imaging (DBSI) to evaluate neuroinflammation and axonal integrity. We examined diffusion-weighted magnetic resonance imaging (MRI) data in two independent cohorts of obese and non-obese individuals (Cohort 1: 25 obese/21 non-obese; Cohort 2: 18 obese/41 non-obese). We applied Tract-based Spatial Statistics (TBSS) to allow whole-brain white matter (WM) analyses and compare DBSI-derived isotropic and anisotropic diffusion measures between the obese and non-obese groups. In both cohorts, the obese group had significantly greater DBSI-derived restricted fraction (DBSI-RF; an indicator of neuroinflammation-related cellularity), and significantly lower DBSI-derived fiber fraction (DBSI-FF; an indicator of apparent axonal density) in several WM tracts (all corrected < 0.05). Moreover, using region of interest analyses, average DBSI-RF and DBSI-FF values in the hippocampus were significantly greater and lower, respectively, in obese relative to non-obese individuals (Cohort 1: = 0.045; Cohort 2: = 0.008). Hippocampal DBSI-FF and DBSI-RF and amygdalar DBSI-FF metrics related to cognitive performance in Cohort 2. In conclusion, these findings suggest that greater neuroinflammation-related cellularity and lower apparent axonal density are associated with human obesity and cognitive performance. Future studies are warranted to determine a potential role for neuroinflammation in obesity-related cognitive impairment. |
Year of Publication |
2019
|
Journal |
Frontiers in human neuroscience
|
Volume |
13
|
Number of Pages |
464
|
Date Published |
12/2019
|
ISSN Number |
1662-5161
|
DOI |
10.3389/fnhum.2019.00464
|
Alternate Journal |
Front Hum Neurosci
|
PMID |
31992978
|
PMCID |
PMC6971102
|
Download citation |