Skip to main content

Diagnosis of niemann-pick C1 by measurement of bile acid biomarkers in archived newborn dried blood spots.

Citation
Jiang, X., et al. “Diagnosis Of Niemann-Pick C1 By Measurement Of Bile Acid Biomarkers In Archived Newborn Dried Blood Spots.”. Molecular Genetics And Metabolism, pp. 183-187.
Center Washington University in St Louis
Author Xuntian Jiang, Rohini Sidhu, Joseph J Orsini, Nicole Y Farhat, Forbes D Porter, Elizabeth Berry-Kravis, Jean E Schaffer, Daniel S Ory
Keywords bile acid, biomarker, Newborn screening, Niemann-pick C disease
Abstract

BACKGROUND: Niemann-Pick disease type C1 (NPC1) is a rare, neurodegenerative cholesterol storage disorder. Diagnostic delay of >5 years is common due to the rarity of the disease and non-specific early symptoms. To improve diagnosis and facilitate early intervention, we previously developed a newborn screening assay based on newly identified plasma bile acid biomarkers. Because the newborn screen had been validated using dried blood spots (DBS) from already diagnosed NPC1 patients, an unanswered question was whether the screen would be able to detect individuals with NPC1 at birth.

METHODS: To address this critical question, we obtained the newborn DBS for already diagnosed NPC1 subjects (n = 15) and carriers (n = 3) residing in California, New York, and Michigan states that archive residual DBS in biorepositories. For each of the DBS, we obtained two neighbor controls - DBS from patients born on the same day and in the same hospital as the NPC1 patients and carriers. 3β,5α,6β-trihydroxycholanic acid (bile acid A) and trihydroxycholanic acid glycine conjugate (bile acid B) were measured in the DBS using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay.

RESULTS: Bile acid B, the more specific biomarker for which the fully validated DBS assay was developed, was detected in 8/15 NPC1 patients, and elevated above the cut-off in 2/15 patients (the two samples with the shortest storage time). Bile acid B was detected in 2/2, 6/10, and 0/7 NPC1 samples that have been stored for <10.5 years, 13-20 years, and > 20 years, respectively, indicating that the glycine conjugate is detectable in DBS but may have reduced long-term stability compared with bile acid A, the precursor trihydroxycholanic acid, which was elevated in 15/15 NPC1 subjects, but not in carriers and controls.

CONCLUSIONS: These results demonstrate that newborn screening for NPC1 disease is feasible using bile acid biomarkers.

Year of Publication
2019
Journal
Molecular genetics and metabolism
Volume
126
Issue
2
Number of Pages
183-187
Date Published
12/2019
ISSN Number
1096-7206
DOI
10.1016/j.ymgme.2018.08.007
Alternate Journal
Mol. Genet. Metab.
PMID
30172462
PMCID
PMC6365165
Download citation