- Home
- Featured Publications
- Center Publications
- Pathway crosstalk perturbation network modeling for identification of connectivity changes induced by diabetic neuropathy and pioglitazone.
Pathway crosstalk perturbation network modeling for identification of connectivity changes induced by diabetic neuropathy and pioglitazone.
Citation | “Pathway Crosstalk Perturbation Network Modeling For Identification Of Connectivity Changes Induced By Diabetic Neuropathy And Pioglitazone.”. Bmc Systems Biology, p. 1. . |
Center | University of Michigan |
Author | Guillermo de Anda-Jáuregui, Kai Guo, Brett A McGregor, Eva L Feldman, Junguk Hur |
Keywords | Crosstalk, Pathway, Pathway network, Perturbation analysis |
Abstract |
BACKGROUND: Aggregation of high-throughput biological data using pathway-based approaches is useful to associate molecular results to functional features related to the studied phenomenon. Biological pathways communicate with one another through the crosstalk phenomenon, forming large networks of interacting processes. RESULTS: In this work, we present the pathway crosstalk perturbation network (PXPN) model, a novel model used to analyze and integrate pathway perturbation data based on graph theory. With this model, the changes in activity and communication between pathways observed in transitions between physiological states are represented as networks. The model presented here is agnostic to the type of biological data and pathway definition used and can be implemented to analyze any type of high-throughput perturbation experiments. We present a case study in which we use our proposed model to analyze a gene expression dataset derived from experiments in a BKS-db/db mouse model of type 2 diabetes mellitus-associated neuropathy (DN) and the effects of the drug pioglitazone in this condition. The networks generated describe the profile of pathway perturbation involved in the transitions between the healthy and the pathological state and the pharmacologically treated pathology. We identify changes in the connectivity of perturbed pathways associated to each biological transition, such as rewiring between extracellular matrix, neuronal system, and G-protein coupled receptor signaling pathways. CONCLUSION: The PXPN model is a novel, flexible method used to integrate high-throughput data derived from perturbation experiments; it is agnostic to the type of data and enrichment function used, and it is applicable to a wide range of biological phenomena of interest. |
Year of Publication |
2019
|
Journal |
BMC systems biology
|
Volume |
13
|
Issue |
1
|
Number of Pages |
1
|
Date Published |
12/2019
|
ISSN Number |
1752-0509
|
DOI |
10.1186/s12918-018-0674-7
|
Alternate Journal |
BMC Syst Biol
|
PMID |
30616626
|
PMCID |
PMC6322225
|
Download citation |