Skip to main content

Measurement of Energy Metabolism in Explanted Retinal Tissue Using Extracellular Flux Analysis.

Citation
Millman, J. R., et al. “Measurement Of Energy Metabolism In Explanted Retinal Tissue Using Extracellular Flux Analysis.”. Journal Of Visualized Experiments : Jove.
Center Washington University in St Louis
Author Jeffrey R Millman, Teresa Doggett, Christina Thebeau, Sheng Zhang, Clay F Semenkovich, Rithwick Rajagopal
Abstract

High acuity vision is a heavily energy-consuming process, and the retina has developed several unique adaptations to precisely meet such demands while maintaining transparency of the visual axis. Perturbations to this delicate balance cause blinding illnesses, such as diabetic retinopathy. Therefore, the understanding of energy metabolism changes in the retina during disease is imperative to the development of rational therapies for various causes of vison loss. The recent advent of commercially-available extracellular flux analyzers has made the study of retinal energy metabolism more accessible. This protocol describes the use of such an analyzer to measure contributions to retinal energy supply through its two principle arms - oxidative phosphorylation and glycolysis - by quantifying changes in oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) as proxies for these pathways. This technique is readily performed in explanted retinal tissue, facilitating assessment of responses to multiple pharmacologic agents in a single experiment. Metabolic signatures in retinas from animals lacking rod photoreceptor signaling are compared to wild-type controls using this method. A major limitation in this technique is the lack of ability to discriminate between light-adapted and dark-adapted energy utilization, an important physiologic consideration in retinal tissue.

Year of Publication
2019
Journal
Journal of visualized experiments : JoVE
Issue
143
Date Published
12/2019
ISSN Number
1940-087X
DOI
10.3791/58626
Alternate Journal
J Vis Exp
PMID
30663677
PMCID
PMC6417428
Download citation